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Abstract

A study of the bending–torsion coupled random response of the monosymmetric thin-walled beams subjected to

various kinds of concentrated and distributed random excitations is dealt with in this paper. The effects of warping

stiffness, shear deformation and rotary inertia are included in the present formulations. The random excitations are

assumed to be stationary, ergodic and Gaussian. Analytical expressions for the displacement response of the thin-walled

beams are obtained by using normal mode superposition method combined with frequency response function method.

The proposed method can produce the accurate solutions for the monosymmetric thin-walled Timoshenko beams or

simple structures constructed from such beams. The effects of warping stiffness, shear deformation and rotary inertia on

the random response of two appropriately chosen thin-walled beams from the literature are demonstrated and discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The thin-walled beam members are playing an important role in the design of aerospace, automobile and

civil structures such as aircraft wings, turbine blades, decks of bridges and axles of vehicles due to their

outstanding properties. Such structures are often subjected to dynamic excitations in complex environ-

mental conditions, in order to ensure that their design is reliable and safe, it is essential for design engineers

to evaluate the dynamic characteristics of the thin-walled beams accurately. Thus, an engineer designing
such a structure needs to be able to predict its response behavior and be able to easily determine what effects

design changes might have on those dynamic response.

It is well known that when the cross-sections of the beams have two symmetric axes, the shear center and

the centroid of the cross-sections coincide, and all bending and torsional vibrations are independent of each

other, this case represents no coupling at all. Then the classical Bernoulli–Euler and/or the Timoshenko

beam theory are valid. However, for a large number of practical beams of thin-walled sections, the centroid
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and shear center of the cross-sections are obviously noncoincident, the above assumption is not valid.

When the cross-sections of the thin-walled beams have only one symmetrical axis, the bending vibration

in the direction of the symmetrical axis is independent of the other vibrations. But the bending vibration in

the perpendicular direction of the symmetric axis is coupled with torsional vibration.
Because of the practical importance of the thin-walled beams, the coupled vibration analyses of such

problems have inspired continuing research interest in recent years. Many researchers have developed the

dynamic response analysis methods for beams having double symmetrical axes and structures composed of

this kind of beams (Nagem, 1991; Singh and Abdelnaser, 1993; Chang, 1994). There are also a number of

studies dealing with coupled bending–torsional vibration of the thin-walled beams, but the available

investigations have been concerned mainly with free vibration characteristics. Small carefully selected

studies are mentioned as follows. Bishop and Price (1977) studied the coupled bending–torsional vibration

of the Timoshenko beams without the warping stiffness included. Hallauer and Liu (1982) and Friberg
(1983) derived the exact dynamic stiffness matrix for a bending–torsion coupled Bernoulli–Euler beam with

the warping stiffness ignored. Dokumaci (1987) first derived the exact analytical expressions for the solution

of the bending–torsion equations without the warping effect. Banerjee and Williams (1992, 1994) derived

the analytical expressions for the coupled bending–torsional dynamic stiffness matrix of a Timoshenko

beam excluding the warping stiffness effect. Hashemi and Richard (2000) presented a new dynamic finite

element for the bending–torsion coupled Bernoulli–Euler beams with the warping stiffness omitted. Bishop

et al. (1989) extended the work of Dokumaci by considering the same equations, but with the inclusion of

warping effect. They showed that the warping effect could produce significant changes in the natural
frequencies of the vibration. Banerjee et al. (1996) formulated an exact dynamic stiffness matrix for a

thin-walled Bernoulli–Euler beam with inclusion of the warping stiffness. Tanaka and Bercin (1999) pre-

sented the exact solution for the bending–torsion coupled nonsymmetrical Bernoulli–Euler beams including

the warping stiffness. Klausbruckner and Pryputniewicz (1995) theoretically, numerically, and experi-

mentally investigated the vibration of the channel beams. They used a thin-walled beam model that

included the effect of warping on the torsional vibration (misleadingly identified as Timoshenko theory no

shear deformation or rotary inertia effects were included) for their analytical investigation and a three-

dimensional finite element model including shear deformation for their numerical analysis. Friberg (1985)
and Leung (1991, 1992) developed the dynamic stiffness matrix of a Vlasov beam with the shear defor-

mation completely ignored. Arpaci et al. (2003) presented an exact analytical method to predict the un-

damped natural frequencies of beams with thin-walled open cross-sections. The effect of shear deformation

is neglected in their formulations, although the effects of warping and rotary inertia are taken into account.

Kim et al. (2003a) proposed an improved numerical method for the free vibration and stability analysis of

nonsymmetric thin-walled beams based on Vlasov beam theory with shear deformation omitted. The effects

of shear deformation and rotary inertia were added to the investigation by Bercin and Tanaka (1997). They

showed that for the thin-walled open cross-section beams, the shear deformation and rotary inertia can
substantially decrease the natural frequencies of the vibration by as much as 60% in the first mode for a very

special case. Kim et al. (2003b) extended their previous work by considering the shear deformation effect.

A literature survey reveals that few studies have considered the response behavior of the thin-walled

beams subjected to deterministic or random external excitations. Chen and Tamma (1994) employed the

finite element method in conjunction with an implicit-starting unconditionally stable methodology for the

dynamic computation of the elastic thin-walled open section structures subjected to deterministic excita-

tions. They employed Vlasov’s assumptions and both warping stiffness and rotary inertia were included in

the developments. But one important parameter, namely the shear deformation, was not included in the
formulations and the paper concentrated attention on the deterministic dynamic response. Eslimy-Isfahany

et al. (1996) developed an analytical theory to investigate the response of a bending–torsion coupled beam

to deterministic and random excitations by using the normal mode method. The authors assumed that the

beam twisted according to the Saint-Venant theory and thus no allowance was made for the warping
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stiffness of the beam cross-section. Such an assumption could lead to large errors when calculating the

dynamic response of a thin-walled open section beam. Also the effects of shear deformation and rotary

inertia were not included in the formulations.

To the best of author’s knowledge, there is no publication available that incorporates several essential
effects simultaneously including bending–torsional coupling, shear deformation, rotary inertia and warping

stiffness to the random response analysis of the thin-walled beams. This problem is addressed in this paper.

The random vibration of the thin-walled Timoshenko beams with monosymmetrical cross-sections is

investigated. The effects due to warping stiffness, shear deformation and rotary inertia on the random

response of the thin-walled beams are of interest here. Theoretical expressions for the mean square dis-

placement response of the thin-walled beams subjected to various kinds of concentrated and distributed

random excitations having stationary and ergodic properties are obtained by using normal mode method

combined with frequency response function method.
2. Free vibration of the thin-walled Timoshenko beams

The structural model used in present study is that of a thin-walled beam with arbitrary monosymmetrical

cross-section. For illustrative purpose, considering a uniform and straight open section thin-walled beam
with length L, shown in Fig. 1. The present thin-walled beam model incorporates the following features

including bending–torsion coupling, transverse shear deformation, rotary inertia and warping stiffness. But

the effects of secondary warping and warping inertia are considered to be negligibly small and have been

neglected in the present theory. The shear center and centriod of the cross-section are denoted by s and c

respectively, which are separated by a distance yc. In the right handed Cartesian coordinate system in Fig. 1,

the x-axis is assumed to coincide with the elastic axis (i.e. loci of the shear center of the cross-section of the

thin-walled beam). The bending translation in the z-direction and the torsional rotation about the x-axis of
the shear center are denoted by mðx; tÞ and wðx; tÞ respectively, where x and t denote distance from the origin
and time respectively. The rotation of the cross-section due to bending alone is denoted by hðx; tÞ. The
external excitations acting on the thin-walled beam are represented by a force f ðx; tÞ per unit length that

parallel to sz-axis and applied to the shear center together with a torque mðx; tÞ per unit length about sx-axis
respectively.

The damped governing differential equations for the bending–torsion coupled forced vibration of the

thin-walled beam, which incorporates shear deformation, rotary inertia and warping stiffness, are expressed

as (for details of the derivation, see Appendix A)
x

y

z

cs

c
y

Fig. 1. A uniform straight thin-walled Timoshenko beam.
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qI€hþ c3 _h� EIh00 � kAGðm0 � hÞ ¼ 0 ð1Þ

�GJw00 � lyc€mþ Is€wþ c2 _w� c1yc _mþ ECw0000 ¼ mðx; tÞ ð2Þ

l€mþ c1ð _m� yc _wÞ � lyc€w� kAGðm00 � h0Þ ¼ f ðx; tÞ ð3Þ
where E and G are Young’s modulus and shear modulus of the thin-walled beam material, respectively. EI ,
kGA, GJ and EC are bending stiffness, shear stiffness, torsional stiffness and warping stiffness of the thin-

walled beam, respectively. l is mass of the thin-walled beam per unit length, I is second area moment of

inertia of the beam cross-section about y-axis, Is is polar mass moment of inertia of per unit length thin-

walled beam about x-axis, superscript primes and dots denote the derivatives with respect to position x and
time t respectively. q is the density of the thin-walled beam material, A is the cross-section area of the thin-

walled beam, k is the effective area coefficient in shear. The damping coefficients c1, c2 and c3 are the linear
viscous damping terms of per unit length thin-walled beam in bending deformation, torsional deformation

and rotational deformation due to bending alone respectively.
The exact solutions for the homogeneous equations of motion corresponding to the free vibration are

considered first. The external excitations f ðx; tÞ and mðx; tÞ are set to zero, as are the damping coefficients c1,
c2 and c3, in order to determine the natural frequencies and mode shapes of the thin-walled beams. A

sinusoidal variation of mðx; tÞ, hðx; tÞ and wðx; tÞ with circular frequency xn is assumed to be of the forms
mðx; tÞ ¼ VnðxÞ sinxnt ð4Þ

hðx; tÞ ¼ HnðxÞ sinxnt ð5Þ

wðx; tÞ ¼ WnðxÞ sinxnt ð6Þ

where n ¼ 1; 2; 3; . . . , VnðxÞ, HnðxÞ and WnðxÞ are the amplitudes of the sinusoidally varying bending

translation mðx; tÞ, bending rotation hðx; tÞ and torsional rotation wðx; tÞ respectively.
Substituting Eqs. (4)–(6) into Eqs. (1)–(3) gives the three simultaneous differential equations for Vn, Hn

and Wn
qIx2
nHn þ EIH00

n þ kGAðV 0
n �HnÞ ¼ 0 ð7Þ

GJW00
n þ Isx2

nWn � x2
nlycVn � ECW0000

n ¼ 0 ð8Þ

kGAðH0
n � V 00

n Þ � lx2
nVn þ lycx2

nWn ¼ 0 ð9Þ
Eqs. (7)–(9) can be combined into one equation by either eliminating all but one of the three variables
Vn, Hn and Wn to give the following eighth-order differential equation
fdD8 þ ðbndðsþ rÞ � 1ÞD6 � ðbnðsþ r þ d � bnsrdÞ þ anÞD4 � bnðanr þ bnsr � 1þ ancsÞD2

þ ancbnð1� bnrsÞgXn ¼ 0 ð10Þ
where
Xn ¼ Vn; Hn or Wn; D ¼ d=dn; n ¼ x=L

an ¼ Isx2
nL

2=GJ ; bn ¼ lx2
nL

4=EI ; c ¼ 1� ly2c=Is; d ¼ EC=GJL2

r ¼ I=AL2; s ¼ EI=kAGL2
Note that d, r and s describe the effects of warping stiffness, rotary inertia and shear deformation,

respectively. Any one of these parameters can be set to zero so that the corresponding effect can be
optionally ignored.
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The solution of the differential equation (10) can be obtained by substituting the trial solution Xn ¼ ejnn

to give the characteristic equation
dj8
n þ ðbndðsþ rÞ � 1Þj6

n � ðbnðsþ r þ d � bnsrdÞ þ anÞj4
n � bnðanr þ bnsr � 1þ ancsÞj2

n

þ ancbnð1� bnrsÞ ¼ 0 ð11Þ
Let
vn ¼ j2
n ð12Þ
Substituting Eq. (12) into Eq. (11) gives
dv4n þ ðbndðsþ rÞ � 1Þv3n � ðbnðsþ r þ d � bnsrdÞ þ anÞv2n � bnðanr þ bnsr � 1þ ancsÞvn
þ ancbnð1� bnrsÞ ¼ 0 ð13Þ
It has been found from the numerical computation that, within the practical range, all four roots of Eq.

(13) are real, two of them negative and the other two positive. Suppose that the four roots are

vn1; vn2;�vn3;�vn4, where vnj (j ¼ 1� 4) are real and positive. Then the eight roots of the characteristic

equation (11) are
an;�an;bn;�bn; icn;�icn; idn;�idn
where i ¼
ffiffiffiffiffiffiffi
�1

p
and an ¼

ffiffiffiffiffiffi
vn1

p
, bn ¼

ffiffiffiffiffiffi
vn2

p
, cn ¼

ffiffiffiffiffiffi
vn3

p
, dn ¼

ffiffiffiffiffiffi
vn4

p
.

It follows that the solution of Eq. (10) is of the following forms
VnðnÞ ¼ c�1 cosh annþ c�2 sinh annþ c�3 cosh bnnþ c�4 sinh bnnþ c�5 cos cnnþ c�6 sin cnnþ c�7 cos dnn

þ c�8 sin dnn ð14Þ

WnðnÞ ¼ tn1c�1 cosh annþ tn1c�2 sinh annþ tn2c�3 cosh bnnþ tn2c�4 sinh bnnþ tn3c�5 cos cnnþ tn3c�6 sin cnn

þ tn4c�7 cos dnnþ tn4c�8 sin dnn ð15Þ

HnðnÞ ¼ tn5c�2 cosh annþ tn5c�1 sinh annþ tn6c�4 cosh bnnþ tn6c�3 sinh bnnþ tn7c�6 cos cnn� tn7c�5 sin cnn

þ tn8c�8 cos dnn� tn8c�7 sin dnn ð16Þ
where c�1–c
�
8 is a set of constants which can be determined from the boundary conditions, and
tn1 ¼ anð1� cÞbn=ðanbn þ bna2n � bnda4nÞyc; tn2 ¼ anð1� cÞbn=ðanbn þ bnb
2
n � bndb

4
nÞyc

tn3 ¼ anð1� cÞbn=ðanbn � bnc2n � bndc4nÞyc; tn4 ¼ anð1� cÞbn=ðanbn � bnd
2
n � bndd

4
nÞyc

tn5 ¼ an=Lð1� bnrs� a2nsÞ; tn6 ¼ bn=Lð1� bnrs� b2
nsÞ

tn7 ¼ cn=Lð1� bnrsþ c2nsÞ; tn8 ¼ dn=Lð1� bnrsþ d2nsÞ
The following boundary conditions of the thin-walled beams are considered:

Clamped edge: Vn ¼ 0, Wn ¼ 0, Hn ¼ 0, W0
n ¼ 0;

Free edge: V 0
n �Hn ¼ 0, dW000

n �W0
n ¼ 0, H0

n ¼ 0, W00
n ¼ 0.

For the clamped-free beams, applying the above boundary conditions to Eqs. (14)–(16) at n ¼ 0 and 1

obtains a set of eight homogeneous algebraic equations
½P�fc�g ¼ 0 ð17Þ
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where ½P� is a 8 · 8 matrix specified by the boundary conditions and fc�g is a 8 · 1 vector of unknown

constants c�1; c
�
2; . . . ; c

�
8. Eq. (17) has nontrivial solutions for fc�g when the determinant of ½P� vanishes; that

is,
det½P� ¼ 0 ð18Þ

or, more precisely, when the rank of ½P� is less than eight. Together, Eqs. (18) and (11) must be solved

numerically for the eigenvalues of the given modes; once they are known, the mode shapes are specified by

Eq. (17).

In general, the solutions must be obtained iteratively. A value is chosen for xn, then Eqs. (11) and (12)

are solved for the corresponding jn and vn. The roots vnj along with xn are used to compute the rank of the

matrix ½P�, by calculating the value of its determinant, for example. If Eq. (18) is not satisfied to within
some tolerance, then the value of xn must be changed and the process is repeated.

The simplest scheme for determining the natural frequencies is to specify a starting value for xn and an

increment Dxn and then simply march up the frequency until all of the desired natural frequencies have

been obtained. Direct computation of the determinant is very cumbersome even for moderately large

matrices. Although more efficient algorithms exist for calculating the determinant, most require that the

matrix be nonsingular and are therefore not useful. A much better approach is to determine the rank

deficiency by using an alternate technique such as singular value decomposition.

Singular value decomposition, which is not restricted to square matrices, decomposes a matrix ½P� into
two orthonormal matrices ½P � and ½Q� and a diagonal matrix ½D� (Bay, 1999) in the form
½P� ¼ ½P �½D�½Q�T ð19Þ
The diagonal elements that consist of ½D� are called the singular values and the number of nonzero singular

values corresponds to the rank of ½P�. The values of xn for which one of the singular values goes to zero are

the natural frequencies. As usual, because ½P� is singular, Eq. (17) can only be used to calculate seven of the

eight unknowns c�j in terms of the remaining one.

Based on Eqs. (7)–(9) and the boundary conditions, the following orthogonality for different mode

shapes of the thin-walled Timoshenko beams can be derived as
Z 1

0

fðqIHmHn þ lVmVn þ IsWmWnÞ � lycðVmWn þ VnWmÞgdn ¼ mndmn ð20Þ
where mn is the generalized mass in the nth mode, dmn is the Kronecker delta function.

With the free vibration natural frequencies, mode shapes, and orthogonality condition described above,
it is now possible to investigate the general random vibration problem of the damped thin-walled Timo-

shenko beams.
3. Random vibration analysis of the thin-walled Timoshenko beams

For forced vibration of the thin-walled Timoshenko beams, assume vðx; tÞ, hðx; tÞ, wðx; tÞ can be

expanded in terms of the eigenfunctions to give the following three equations
mðx; tÞ ¼ mðnL; tÞ ¼
X1
n¼1

qnðtÞVnðnÞ ð21Þ

wðx; tÞ ¼ wðnL; tÞ ¼
X1
n¼1

qnðtÞWnðnÞ ð22Þ
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hðx; tÞ ¼ hðnL; tÞ ¼
X1
n¼1

qnðtÞHnðnÞ ð23Þ
where qnðtÞ are the generalized time-dependent coordinates for each mode. Substituting Eqs. (21)–(23) into

Eqs. (1)–(3) and using Eqs. (7)–(9) yields
X1
n¼1

½lðVn � ycWnÞ€qn þ c1ðVn � ycWnÞ _qn þ lx2
nðVn � ycWnÞqn� ¼ f ðn; tÞ ð24Þ

X1
n¼1

½qIHn€qn þ c3Hn _qn þ qIx2
nHnqn� ¼ 0 ð25Þ

X1
n¼1

½ðIsWn � lycVnÞ€qn þ ðc2Wn � c1VnycÞ _qn þ x2
nðIsWn � lycVnÞqn� ¼ mðn; tÞ ð26Þ
where superscript dot denotes derivative with respect to time.

Multiplying Eqs. (24)–(26) by Vm, Hm and Wm respectively, then summing up these three equations and

integrating from 0 to 1, and using orthogonality condition (20) gives
€qnðtÞ þ 2fnxn _qnðtÞ þ x2
nqnðtÞ ¼ ½FnðtÞ þMnðtÞ� ð27Þ
where
FnðtÞ ¼
1

mn

Z 1

0

VnðnÞf ðn; tÞdn; MnðtÞ ¼
1

mn

Z 1

0

WnðnÞmðn; tÞdn
fn is a nondimensional quantity known as the viscous damping factor. Here the following assumption has

been made

Z 1

0

½ðc1VmVn þ c2WmWn þ c3HmHnÞ � c1ycðVmWn þ VnWmÞ�dn ¼ 2fnxnmndmn
The dynamic response of the thin-walled Timoshenko beams subjected to stationary, ergodic random

excitations with zero initial conditions is investigated in the frequency domain by using the frequency re-

sponse function method.

From Eq. (27), the cross-spectral density function SqnqlðXÞ of the generalized time-dependent coordinate

qnðtÞ can be derived as
SqnqlðXÞ ¼ H �
n ðXÞ½SFnFlðXÞ þ SMnMlðXÞ�HlðXÞ ð28Þ
where HlðXÞ is the frequency response function
HlðXÞ ¼
1

ðx2
l � X2 þ 2iflXxlÞ
H �
n ðXÞ is the complex conjugate of HnðXÞ, SFnFlðXÞ is the cross-spectral density function between FnðtÞ and

FlðtÞ, SMnMlðXÞ is the cross-spectral density function between MnðtÞ and MlðtÞ. Since it is assumed that the

random excitations f ðn; tÞ and mðn; tÞ are stationary in time, then so are the generalized forces FnðtÞ and
MnðtÞ. Furthermore, FnðtÞ and MnðtÞ are assumed to be independent random processes so that the cross-
spectral density function between FnðtÞ and MnðtÞ can be excluded.
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Based on the expressions of the generalized forces FnðtÞ and MnðtÞ, the cross-spectral density functions

SFnFlðXÞ and SMnMlðXÞ can be obtained explicitly as, respectively
SFnFlðXÞ ¼
1

mnml

Z 1

0

Z 1

0

Vnðn1ÞVlðn2ÞSf ðn1; n2;XÞdn1 dn2

SMnMlðXÞ ¼
1

mnml

Z 1

0

Z 1

0

Wnðn1ÞWlðn2ÞSmðn1; n2;XÞdn1 dn2
ð29Þ
where Sf ðn1; n2;XÞ is the distributed cross-spectral density function between the bending excitations f ðn1; tÞ
and f ðn2; tÞ, Smðn1; n2;XÞ is the distributed cross-spectral density function between the torsional excitations

mðn1; tÞ and mðn2; tÞ.According to Eqs. (21)–(23), with the help of Eqs. (28) and (29), the cross-spectral

density functions Svðn1; n2;XÞ , Swðn1; n2;XÞ and Shðn1; n2;XÞ of the bending translation mðn; tÞ, torsional
rotation wðn; tÞ and bending rotation hðn; tÞ can be written as
Smðn1; n2;XÞ ¼
X1
n¼1

X1
l¼1

h�nðXÞhlðXÞgnlðXÞVnðn1ÞVlðn2Þ ð30Þ

Swðn1; n2;XÞ ¼
X1
n¼1

X1
l¼1

h�nðXÞhlðXÞgnlðXÞWnðn1ÞWlðn2Þ ð31Þ

Shðn1; n2;XÞ ¼
X1
n¼1

X1
l¼1

h�nðXÞhlðXÞgnlðXÞHnðn1ÞHlðn2Þ ð32Þ
where h�nðXÞ is the complex conjugate of hnðXÞ
hlðXÞ ¼
1

mlðx2
l � X2 þ 2iflxlXÞ

gnlðXÞ ¼
Z 1

0

Z 1

0

fVnðn1ÞVlðn2ÞSf ðn1; n2;XÞ þWnðn1ÞWlðn2ÞSmðn1; n2;XÞgdn1 dn2
For n1 ¼ n2 ¼ n, the cross-spectral density functions Svðn1; n2;XÞ, Swðn1; n2;XÞ and Shðn1; n2;XÞ reduce to

the spectral density functions Smðn;XÞ, Swðn;XÞ and Shðn;XÞ
Smðn;XÞ ¼
X1
n¼1

X1
l¼1

h�nðXÞhlðXÞgnlðXÞVnðnÞVlðnÞ ð33Þ

Swðn;XÞ ¼
X1
n¼1

X1
l¼1

h�nðXÞhlðXÞgnlðXÞWnðnÞWlðnÞ ð34Þ

Shðn;XÞ ¼
X1
n¼1

X1
l¼1

h�nðXÞhlðXÞgnlðXÞHnðnÞHlðnÞ ð35Þ
The mean square values of the bending translation, torsional rotation and bending rotation can be found

by integrating the corresponding spectral density functions over all frequencies
hv2ðn; tÞi ¼
Z 1

�1
Svðn;XÞdX ð36Þ



L. Jun et al. / International Journal of Solids and Structures 41 (2004) 6023–6040 6031
hw2ðn; tÞi ¼
Z 1

�1
Swðn;XÞdX ð37Þ
hh2ðn; tÞi ¼
Z 1

�1
Shðn;XÞdX ð38Þ
If the external random excitations are assumed to follow the Gaussian probability distribution, the

response probability will also be Gaussian, and therefore the response can be fully described by its spectral

density function.

For simplicity, suppose that there is only one randomly varying concentrated bending excitation acting

on the thin-walled beam at n ¼ nf . In this case, gnlðXÞ in Eqs. (30)–(32) can be simplified as
gnlðXÞ ¼ Vnðnf ÞVlðnf ÞSf ðXÞ ð39Þ
The spectral density functions of the bending translation, torsional rotation and bending rotation are

then given by Eqs. (33)–(35) as
Svðn;XÞ ¼
X1
l¼1

hlðXÞVlðnÞVlðnf Þ
�����

�����
2

Sf ðXÞ ð40Þ
Swðn;XÞ ¼
X1
l¼1

hlðXÞWlðnÞVlðnf Þ
�����

�����
2

Sf ðXÞ ð41Þ
Shðn;XÞ ¼
X1
l¼1

hlðXÞHlðnÞVlðnf Þ
�����

�����
2

Sf ðXÞ ð42Þ
4. Numerical results

Some numerical results are given to demonstrate the theoretical formulations derived in preceding

sections, which can be directly applied to compute the random response of the thin-walled Timoshenko

beams subjected to concentrated or distributed random excitations.

The first example is a cantilever thin-walled beam with monosymmetrical semi-circular cross-section,

shown in Fig. 2. The geometrical and physical properties of the thin-walled beam are given as follows:
I ¼ 9:26� 10�8 m4; J ¼ 1:64� 10�9 m4; Is ¼ 0:000501 kgm; yc ¼ 0:0155 m; L ¼ 0:82 m

C ¼ 1:52� 10�12 m6; l ¼ 0:835 kgm�1 E ¼ 68:9� 109 Nm�2; G ¼ 26:5� 109 Nm�2

k ¼ 0:5; A ¼ 3:08� 10�4 m2; q ¼ 2711:04 kgm�3
To validate and confirm the accuracy of the present numerical results, the natural frequencies and mode

shapes of the above thin-walled beam for undamped free vibration are computed first. The first five natural

frequencies of the thin-walled beam are shown in Table 1. The corresponding first five normal mode shapes

including the shear deformation, rotary inertia and warping stiffness are shown in Fig. 3(a)–(e). It can be
seen from Table 1 that the agreement between the present results and those of Bercin and Tanaka (1997) is

very excellent. As expected, the corresponding mode shapes of Fig. 3 also resemble the ones given by Bercin
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Fig. 2. Beam cross-section used in numerical example 1.

Table 1

Coupled bending–torsional natural frequencies of the cantilever semi-circular section beam

Frequency order Natural frequency (Hz)

Only warping ignored Only shear deforma-

tion and rotary

inertia ignored

Shear deformation, rotary inertia and warping

included

Present results Results in Bercin and

Tanaka (1997)

1 62.34 63.79 63.50 63.51

2 129.87 137.68 137.38 137.39

3 259.21 278.35 275.81 275.82

4 418.89 484.77 481.09 481.10

5 605.21 663.84 639.75 639.76
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and Tanaka (1997) very closely. Also, to be consistent with Bercin and Tanaka (1997), the bending rotation

and torsional rotation are multiplied by the distance yc when plotting the mode shapes.

Based on the natural frequencies and mode shapes of the thin-walled beam, the mean square values of
bending translation, bending rotation and torsional rotation due to a random varying concentrated

bending excitation can be computed without any difficulty. The random bending excitation is assumed to be

an ideal white noise, so the Sf ðxÞ in Eqs. (40)–(42) can be replaced by a constant, i.e. Sf ðxÞ ¼ S0 (S0 is a
constant). In Figs. 4–6, respectively, are shown the mean square values of bending translation, bending

rotation and torsional rotation along the length of the cantilever thin-walled beam subjected to an ideal

white noise concentrated bending excitation acting at the tip of the beam. The value of the damping

coefficient has been taken as 0.01. The mean square bending displacements and torsional displacement

accounting for the shear deformation and rotary inertia have a little difference from the ones excluding the
shear deformation and rotary inertia. But the mean square bending displacements and torsional dis-

placement including the warping stiffness are significantly different from the ones excluding the warping

stiffness, as can be seen from Figs. 4–6. The numerical results show that it is necessary to consider the



Fig. 3. The first five normal mode shapes of example 1 with the warping stiffness, shear deformation and rotary inertia included (a)

mode 1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5.
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warping stiffness effect when the mean square displacements of this thin-walled beam are calculated. The

effects of shear deformation and rotary inertia on the mean square displacements seem to be insignificant

for this specific problem investigated.

A cantilever thin-walled uniform beam with a monosymmetrical channel cross-section is consid-

ered next, shown in Fig. 7. The geometrical properties and physical properties of the beam are given

below:



Fig. 4. Mean square bending translation along the length of the cantilever thin-walled beam.

Fig. 5. Mean square bending rotation along the length of the cantilever thin-walled beam. the length of the cantilever thin-walled beam.
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I ¼ 1:449� 10�3 m4; J ¼ 1:223� 10�5 m4; Is ¼ 56:87 kgm; yc ¼ 0:336 m; L ¼ 3:2 m

C ¼ 3:885� 10�5 m6; l ¼ 225 kgm�1; E ¼ 2:1� 1011 Nm�2; G ¼ 8� 1010 Nm�2

k ¼ 0:5136; A ¼ 0:012856 m2; q ¼ 17501:6 kgm�3
The first five natural frequencies of the cantilever thin-walled beam with and without inclusion of the

warping stiffness and/or shear deformation and rotary inertia are calculated and the numerical results are

shown in Table 2, along with the natural frequencies of Bercin and Tanaka (1997). The corresponding

mode shapes of the first five normal modes including the warping stiffness, shear deformation and rotary

inertia are plotted in Fig. 8(a)–(e). Again, it can be seen from Table 2 and Fig. 8, the natural frequencies and

mode shapes obtained from the present theory completely agree with those given by Bercin and Tanaka

(1997).



Table 2

Coupled bending–torsional natural frequencies of the cantilever channel section beam

Frequency order Natural frequency (Hz)

Only warping ignored Only shear deforma-

tion and rotary

inertia ignored

Shear deformation, rotary inertia and warping

included

Present results Results in Bercin and

Tanaka (1997)

1 10.17 24.02 23.78 23.79

2 30.51 88.53 77.24 78.26

3 51.08 131.40 124.77 124.78

4 71.29 358.57 295.25 295.26

5 74.94 549.81 334.87 334.88

Fig. 6. Mean square torsional rotation along the length of the cantilever thin-walled beam.
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Fig. 7. Beam cross-section used in numerical example 2.
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Fig. 8. The first five normal mode shapes of example 2 with the warping stiffness, shear deformation and rotary inertia included (a)

mode 1; (b) mode 2; (c) mode 3; (d) mode 4; (e) mode 5.
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Following the same procedure discussed above, the random response can be computed without any

difficulty based on the natural frequencies and mode shapes. To compare the results obtained from the

present theory including the warping stiffness, shear deformation and rotary inertia with those given by the

theory excluding the warping stiffness or shear deformation and rotary inertia, the mean square values of

the bending translation, bending rotation and torsional rotation due to a random varying concentrated

bending excitation are calculated. The value of the damping coefficient used in computation is 0.01. In Figs.
9–11, respectively, are shown the mean square values of the bending translation, bending rotation and



Fig. 9. Mean square bending translation along the length of the cantilever thin-walled beam.

Fig. 10. Mean square bending rotation along the length of the cantilever thin-walled beam. the length of the cantilever thin-walled

beam.

Fig. 11. Mean square torsional rotation along the length of the cantilever thin-walled beam.
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Table 3

Mean square values of the bending and torsional response at the tip of the cantilever thin-walled beam

Warping ignored Shear deformation and

rotary inertia ignored

Present theory

Bending translation hm2i=S0 3.82· 10�10 4.35· 10�10 7.98· 10�10

Bending rotation hh2i=S0 5.38· 10�11 8.97· 10�11 1.12· 10�10

Torsional rotation hw2i=S0 1.18· 10�9 1.09· 10�9 2.30· 10�9
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torsional rotation along the length of the thin-walled beam subjected to an ideal white noise concentrated
bending excitation acting at the tip of the beam. As can be seen from Figs. 9–11, the mean square values of

the bending displacements and torsional displacement predicted by the theory considering the warping

stiffness, shear deformation and rotary inertia are significantly different from those obtained from the

theory excluding the warping stiffness or shear deformation and rotary inertia. The difference is more

pronounced at the tip of the cantilever thin-walled beam. The mean square values of the bending dis-

placements and torsional displacement at the tip of the cantilever thin-walled beam are shown in Table 3.

The numerical results illustrate quite well that the warping stiffness and shear deformation and rotary

inertia can have strong influences on the random response of the thin-walled beam. So it is absolutely
necessary to include the warping stiffness, shear deformation and rotary inertia when the mean square

displacements of this channel section thin-walled beam are computed.
5. Conclusions

An analytical method for determining the bending–torsion coupled random response of the thin-walled

beams with monosymmetrical cross-sections is developed. The method takes into account the effects of
warping stiffness, shear deformation and rotatory inertia. The external random excitations can be con-

centrated or distributed along the beam length and are assumed to be stationary and ergodic. The mean

square displacements of the thin-walled beams are computed by using the normal mode method combined

with frequency response function method. The effects of warping stiffness, shear deformation and rotary

inertia on the random response of two appropriately chosen thin-walled beams from the literature are

demonstrated and discussed.
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Appendix A

The damped governing differential equations for the bending–torsion coupled forced vibration of the

thin-walled Timoshenko beams can be derived using the Hamilton’s principle as follows.

The total strain energy U of a thin-walled Timoshenko beam shown in Fig. 1 is given by
U ¼ 1

2

Z L

0

EIðh0Þ2
n

þ kAGðm0 � hÞ2 þ ECðw00Þ2 þ GJðw0Þ2
o
dx ðA:1Þ
where all the variables and symbols are defined in Section 2.
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The total kinetic energy T of a thin-walled Timoshenko beam is given by
T ¼ 1

2

Z L

0

lð _m2
h

� 2yc _m _wÞ þ Is _w
2 þ qI _h2

i
dx ðA:2Þ
The governing equations of motion and the boundary conditions can be derived conveniently by means

of the Hamilton’s principle, which can be stated in the form
Z t2

t1

ðdT � dU þ dW Þdt ¼ 0 ðA:3Þ

dm ¼ dh ¼ dw ¼ dw0 ¼ 0 at t ¼ t1; t2

Herein T is the kinetic energy, U the potential energy, dW the virtual work of the nonconservative forces,

which can be written as
dW ¼
Z L

0

f ðx; tÞdm
h

þ mðx; tÞdw� c1ð _m� yc _wÞdm� ðc2 _w� c1yc _mÞdw� c3 _hdh
i
dx ðA:4Þ
Substituting Eqs. (A.1), (A.2) and (A.4) into Eq. (A.3) and carrying out the usual steps yields the

governing equations of motion and the boundary conditions.

(a) The governing equations of motion
l€m� lyc€w� kAGv00 þ kAGh0 þ c1ð _m� yc _wÞ ¼ f ðx; tÞ ðA:5Þ

Is€w� lyc€mþ ECw0000 � GJw00 þ ðc2 _w� c1yc _mÞ ¼ mðx; tÞ ðA:6Þ

qI€h� EIh00 � kAGv0 þ kAGhþ c3 _h ¼ 0 ðA:7Þ

(b) The boundary conditions at the ends (x ¼ 0; L)
ð�kAGv0 þ kAGhÞdm ¼ 0 ðA:8Þ

ðECw000 � GJw0Þdw ¼ 0 ðA:9Þ

ð�EIh0Þdh ¼ 0 ðA:10Þ

ð�ECw00Þdw0 ¼ 0 ðA:11Þ
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