Available online at www.sciencedirect.com
INTERNATIONAL JOURNAL OF

sc.ENCE@D.nECT® SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

ELSEVIER International Journal of Solids and Structures 41 (2004) 6023-6040

Response of monosymmetric thin-walled Timoshenko
beams to random excitations

Li Jun *, Shen Rongying, Hua Hongxing, Jin Xianding

Vibration, Shock and Noise Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, People’s Republic of China
Received 9 May 2004

Abstract

A study of the bending—torsion coupled random response of the monosymmetric thin-walled beams subjected to
various kinds of concentrated and distributed random excitations is dealt with in this paper. The effects of warping
stiffness, shear deformation and rotary inertia are included in the present formulations. The random excitations are
assumed to be stationary, ergodic and Gaussian. Analytical expressions for the displacement response of the thin-walled
beams are obtained by using normal mode superposition method combined with frequency response function method.
The proposed method can produce the accurate solutions for the monosymmetric thin-walled Timoshenko beams or
simple structures constructed from such beams. The effects of warping stiffness, shear deformation and rotary inertia on
the random response of two appropriately chosen thin-walled beams from the literature are demonstrated and discussed.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Thin-walled beam; Timoshenko beam; Bending—torsional coupling; Random response; Normal mode method

1. Introduction

The thin-walled beam members are playing an important role in the design of aerospace, automobile and
civil structures such as aircraft wings, turbine blades, decks of bridges and axles of vehicles due to their
outstanding properties. Such structures are often subjected to dynamic excitations in complex environ-
mental conditions, in order to ensure that their design is reliable and safe, it is essential for design engineers
to evaluate the dynamic characteristics of the thin-walled beams accurately. Thus, an engineer designing
such a structure needs to be able to predict its response behavior and be able to easily determine what effects
design changes might have on those dynamic response.

It is well known that when the cross-sections of the beams have two symmetric axes, the shear center and
the centroid of the cross-sections coincide, and all bending and torsional vibrations are independent of each
other, this case represents no coupling at all. Then the classical Bernoulli-Euler and/or the Timoshenko
beam theory are valid. However, for a large number of practical beams of thin-walled sections, the centroid
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and shear center of the cross-sections are obviously noncoincident, the above assumption is not valid.
When the cross-sections of the thin-walled beams have only one symmetrical axis, the bending vibration
in the direction of the symmetrical axis is independent of the other vibrations. But the bending vibration in
the perpendicular direction of the symmetric axis is coupled with torsional vibration.

Because of the practical importance of the thin-walled beams, the coupled vibration analyses of such
problems have inspired continuing research interest in recent years. Many researchers have developed the
dynamic response analysis methods for beams having double symmetrical axes and structures composed of
this kind of beams (Nagem, 1991; Singh and Abdelnaser, 1993; Chang, 1994). There are also a number of
studies dealing with coupled bending—torsional vibration of the thin-walled beams, but the available
investigations have been concerned mainly with free vibration characteristics. Small carefully selected
studies are mentioned as follows. Bishop and Price (1977) studied the coupled bending—torsional vibration
of the Timoshenko beams without the warping stiffness included. Hallauer and Liu (1982) and Friberg
(1983) derived the exact dynamic stiffness matrix for a bending—torsion coupled Bernoulli-Euler beam with
the warping stiffness ignored. Dokumaci (1987) first derived the exact analytical expressions for the solution
of the bending-torsion equations without the warping effect. Banerjee and Williams (1992, 1994) derived
the analytical expressions for the coupled bending-torsional dynamic stiffness matrix of a Timoshenko
beam excluding the warping stiffness effect. Hashemi and Richard (2000) presented a new dynamic finite
element for the bending—torsion coupled Bernoulli-Euler beams with the warping stiffness omitted. Bishop
et al. (1989) extended the work of Dokumaci by considering the same equations, but with the inclusion of
warping effect. They showed that the warping effect could produce significant changes in the natural
frequencies of the vibration. Banerjee et al. (1996) formulated an exact dynamic stiffness matrix for a
thin-walled Bernoulli-Euler beam with inclusion of the warping stiffness. Tanaka and Bercin (1999) pre-
sented the exact solution for the bending—torsion coupled nonsymmetrical Bernoulli-Euler beams including
the warping stiffness. Klausbruckner and Pryputniewicz (1995) theoretically, numerically, and experi-
mentally investigated the vibration of the channel beams. They used a thin-walled beam model that
included the effect of warping on the torsional vibration (misleadingly identified as Timoshenko theory no
shear deformation or rotary inertia effects were included) for their analytical investigation and a three-
dimensional finite element model including shear deformation for their numerical analysis. Friberg (1985)
and Leung (1991, 1992) developed the dynamic stiffness matrix of a Vlasov beam with the shear defor-
mation completely ignored. Arpaci et al. (2003) presented an exact analytical method to predict the un-
damped natural frequencies of beams with thin-walled open cross-sections. The effect of shear deformation
is neglected in their formulations, although the effects of warping and rotary inertia are taken into account.
Kim et al. (2003a) proposed an improved numerical method for the free vibration and stability analysis of
nonsymmetric thin-walled beams based on Vlasov beam theory with shear deformation omitted. The effects
of shear deformation and rotary inertia were added to the investigation by Bercin and Tanaka (1997). They
showed that for the thin-walled open cross-section beams, the shear deformation and rotary inertia can
substantially decrease the natural frequencies of the vibration by as much as 60% in the first mode for a very
special case. Kim et al. (2003b) extended their previous work by considering the shear deformation effect.

A literature survey reveals that few studies have considered the response behavior of the thin-walled
beams subjected to deterministic or random external excitations. Chen and Tamma (1994) employed the
finite element method in conjunction with an implicit-starting unconditionally stable methodology for the
dynamic computation of the elastic thin-walled open section structures subjected to deterministic excita-
tions. They employed Vlasov’s assumptions and both warping stiffness and rotary inertia were included in
the developments. But one important parameter, namely the shear deformation, was not included in the
formulations and the paper concentrated attention on the deterministic dynamic response. Eslimy-Isfahany
et al. (1996) developed an analytical theory to investigate the response of a bending—torsion coupled beam
to deterministic and random excitations by using the normal mode method. The authors assumed that the
beam twisted according to the Saint-Venant theory and thus no allowance was made for the warping



L. Jun et al. | International Journal of Solids and Structures 41 (2004) 6023-6040 6025

stiffness of the beam cross-section. Such an assumption could lead to large errors when calculating the
dynamic response of a thin-walled open section beam. Also the effects of shear deformation and rotary
inertia were not included in the formulations.

To the best of author’s knowledge, there is no publication available that incorporates several essential
effects simultaneously including bending—torsional coupling, shear deformation, rotary inertia and warping
stiffness to the random response analysis of the thin-walled beams. This problem is addressed in this paper.
The random vibration of the thin-walled Timoshenko beams with monosymmetrical cross-sections is
investigated. The effects due to warping stiffness, shear deformation and rotary inertia on the random
response of the thin-walled beams are of interest here. Theoretical expressions for the mean square dis-
placement response of the thin-walled beams subjected to various kinds of concentrated and distributed
random excitations having stationary and ergodic properties are obtained by using normal mode method
combined with frequency response function method.

2. Free vibration of the thin-walled Timoshenko beams

The structural model used in present study is that of a thin-walled beam with arbitrary monosymmetrical
cross-section. For illustrative purpose, considering a uniform and straight open section thin-walled beam
with length L, shown in Fig. 1. The present thin-walled beam model incorporates the following features
including bending—torsion coupling, transverse shear deformation, rotary inertia and warping stiffness. But
the effects of secondary warping and warping inertia are considered to be negligibly small and have been
neglected in the present theory. The shear center and centriod of the cross-section are denoted by s and ¢
respectively, which are separated by a distance y.. In the right handed Cartesian coordinate system in Fig. 1,
the x-axis is assumed to coincide with the elastic axis (i.e. loci of the shear center of the cross-section of the
thin-walled beam). The bending translation in the z-direction and the torsional rotation about the x-axis of
the shear center are denoted by v(x, ¢) and ¥(x, ¢) respectively, where x and ¢ denote distance from the origin
and time respectively. The rotation of the cross-section due to bending alone is denoted by 0(x,¢). The
external excitations acting on the thin-walled beam are represented by a force f(x,¢) per unit length that
parallel to sz-axis and applied to the shear center together with a torque m(x, ¢) per unit length about sx-axis
respectively.

The damped governing differential equations for the bending—torsion coupled forced vibration of the
thin-walled beam, which incorporates shear deformation, rotary inertia and warping stiffness, are expressed
as (for details of the derivation, sce Appendix A)

zZA
s c Y
< >l iy
¥

X

Fig. 1. A uniform straight thin-walled Timoshenko beam.
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pI0 + c30 — EI0" — kAG(Y — 0) = 0 (1)
—GIY" — Wb + I + coff — cryed + EDY" = m(x, 1) (2)
i+ e (v = yelh) — et — kAG( = 0) = £ (x, 1) (3)

where E and G are Young’s modulus and shear modulus of the thin-walled beam material, respectively. El,
kGA, GJ and ET are bending stiffness, shear stiffness, torsional stiffness and warping stiffness of the thin-
walled beam, respectively. u is mass of the thin-walled beam per unit length, 7 is second area moment of
inertia of the beam cross-section about y-axis, /i is polar mass moment of inertia of per unit length thin-
walled beam about x-axis, superscript primes and dots denote the derivatives with respect to position x and
time ¢ respectively. p is the density of the thin-walled beam material, 4 is the cross-section area of the thin-
walled beam, £ is the effective area coefficient in shear. The damping coefficients ¢, ¢, and ¢; are the linear
viscous damping terms of per unit length thin-walled beam in bending deformation, torsional deformation
and rotational deformation due to bending alone respectively.

The exact solutions for the homogeneous equations of motion corresponding to the free vibration are
considered first. The external excitations f (x, ) and m(x, ¢) are set to zero, as are the damping coefficients ¢,
¢, and c3, in order to determine the natural frequencies and mode shapes of the thin-walled beams. A
sinusoidal variation of v(x,), 8(x,?) and ¥ (x,¢) with circular frequency w, is assumed to be of the forms

v(x, 1) = V,(x) sin ,¢ (4)
0(x,t) = O,(x) sin w,¢ (5)
Y(x, 1) = ¥, (x) sin o,z (6)
where n=1,2,3,..., V,(x), ©,(x) and ¥,(x) are the amplitudes of the sinusoidally varying bending

translation v(x, ¢), bending rotation 6(x,¢) and torsional rotation y(x, ¢) respectively.
Substituting Egs. (4)—(6) into Egs. (1)—(3) gives the three simultaneous differential equations for 7, ©,
and ¥,

plw’®, + EIO" + kGA(V] — 0,) =0 (7)
GJV! + [V, — o .V, — ETP! =0 (8)
kGA(O), = V') — poyV, + e, ¥, = 0 ©)

Eqgs. (7)—(9) can be combined into one equation by either eliminating all but one of the three variables
V., ©, and ¥, to give the following eighth-order differential equation

{dD® 4 (b,d(s +r) — 1)D° — (b,(s + r +d — b,srd) + a,) D* — b,(a,r + b,sr — 1 + a,cs) D?
+ ayeh, (1 — b,rs)}X, =0 (10)
where
X, =V, ©,or¥, D=d/d¢ ¢&E=x/L
a, = Lw?l?/GJ, b, =uw?l*/EI, c¢=1—w?/l, d=EIl/GJL?
r=1J/AL*, s= EI/kAGL?
Note that d, » and s describe the effects of warping stiffness, rotary inertia and shear deformation,

respectively. Any one of these parameters can be set to zero so that the corresponding effect can be
optionally ignored.
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The solution of the differential equation (10) can be obtained by substituting the trial solution X, = e*¢
to give the characteristic equation

di + (b,d(s +7) — Db — (b,(s +r+d — bysrd) + a,)x} — b,(a,r + b,sr — 1 + a,cs)K?
+ a,ch,(1 = b,rs) =0 (11)

Let
Tn =K, (12)
Substituting Eq. (12) into Eq. (11) gives
dyt 4+ (byd(s +7) — 1)y} — (bu(s + 7 +d — bysrd) + a,) > — by(a,r + bysr — 1+ a,cs)y,
+ auch,(1 —b,rs) =0 (13)

It has been found from the numerical computation that, within the practical range, all four roots of Eq.
(13) are real, two of them negative and the other two positive. Suppose that the four roots are
Ynt> Xnas —Xn3s —Xna» Where y,. (j =1 —4) are real and positive. Then the eight roots of the characteristic
equation (11) are

Oy — Wy, ﬂm _ﬂm i’yna _iyna i5n7 _1571
where i = v—1 and o, = \/7,1> By = /2> Vo = /T3> On = \/Zna-
It follows that the solution of Eq. (10) is of the following forms
V(&) = ¢} cosha,& + ¢ sinh o,,& + ¢; cosh f,& + ¢ sinh f8,& + ¢ cos vy, & + ¢ siny, & + ¢5 cos §,&
+cgsind, ¢ (14)

¥, (&) = tyc) cosh o, & + 1,165 sinh o, & + t,5¢; cosh B,E + t,pc sinh B,E + 13¢5 cosp, & + 3¢ siny, &
+ 1445 €08 0, & + tyacy Sin 6, & (15)

0,(&) = tysc5 cosh o, & + t,sc) sinh o, & + t,6¢; cosh f,E + t6¢; sinh f,E + t,7¢¢ cos ), & — t7¢58iny, &
+ t,5C;5 €08 6, & — 1,55 8In 3,¢& (16)

where cj—c; is a set of constants which can be determined from the boundary conditions, and
tm = a,(1 = )b,/ (anb, + byo? — b,dot)ye, t = a,(1 — ¢)b,/(awb, + buf — budBl)ye
twy = an(1 = )by /(anby — byy> — bydy)ye,  tos = a,(1 — )b,/ (ayby — byS: — bydS?)ye
tus = 0/ L(1 — byrs — o2s),  tys = B,/L(1 — b,rs — f2s)
i = 7,/L(1 = byrs +72s),  tyg = 0,/L(1 — b,rs + 55s)
The following boundary conditions of the thin-walled beams are considered:

Clamped edge: V, =0, ¥,=0,0, =0, ¥, =0,
Free edge: V) — 0, =0,d¥" - ¥ =0,0 =0, ¥/ =0.

For the clamped-free beams, applying the above boundary conditions to Eqs. (14)—(16) at £ =0 and 1
obtains a set of eight homogeneous algebraic equations

[11){c"} =0 (17)
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where [IT] is a 8 x8 matrix specified by the boundary conditions and {c*} is a 8 x 1 vector of unknown
constants ¢}, ¢4, ..., cs. Eq. (17) has nontrivial solutions for {¢*} when the determinant of [II] vanishes; that
is,

det[l1] = 0 (18)

or, more precisely, when the rank of [I1] is less than eight. Together, Egs. (18) and (11) must be solved
numerically for the eigenvalues of the given modes; once they are known, the mode shapes are specified by
Eq. (17).

In general, the solutions must be obtained iteratively. A value is chosen for w,, then Egs. (11) and (12)
are solved for the corresponding «, and y,. The roots y,; along with o, are used to compute the rank of the
matrix [[1], by calculating the value of its determinant, for example. If Eq. (18) is not satisfied to within
some tolerance, then the value of w, must be changed and the process is repeated.

The simplest scheme for determining the natural frequencies is to specify a starting value for w, and an
increment Aw, and then simply march up the frequency until all of the desired natural frequencies have
been obtained. Direct computation of the determinant is very cumbersome even for moderately large
matrices. Although more efficient algorithms exist for calculating the determinant, most require that the
matrix be nonsingular and are therefore not useful. A much better approach is to determine the rank
deficiency by using an alternate technique such as singular value decomposition.

Singular value decomposition, which is not restricted to square matrices, decomposes a matrix [I1] into
two orthonormal matrices [P] and [Q] and a diagonal matrix [D] (Bay, 1999) in the form

1] = [PID][Q) (19)

The diagonal elements that consist of [D] are called the singular values and the number of nonzero singular
values corresponds to the rank of [I1]. The values of w, for which one of the singular values goes to zero are
the natural frequencies. As usual, because [I1] is singular, Eq. (17) can only be used to calculate seven of the
eight unknowns ¢; in terms of the remaining one.

Based on Egs. (7)-(9) and the boundary conditions, the following orthogonality for different mode
shapes of the thin-walled Timoshenko beams can be derived as

1
/ {(p16,0, + 1V, V, + LY, W) — wyie(V Vo + V,¥,)} dE = 7,0, (20)
0

where m, is the generalized mass in the nth mode, 6,,, is the Kronecker delta function.

With the free vibration natural frequencies, mode shapes, and orthogonality condition described above,
it is now possible to investigate the general random vibration problem of the damped thin-walled Timo-
shenko beams.

3. Random vibration analysis of the thin-walled Timoshenko beams

For forced vibration of the thin-walled Timoshenko beams, assume v(x,t), 0(x,?), ¥(x,¢) can be
expanded in terms of the eigenfunctions to give the following three equations

o0

v, 1) = v(EL ) =Y qu(t)Vi(€) (21)

n=1

o0

W(x,t) = y(CL,t) = Z 4a(1) ¥ (E) (22)

n=1
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o0

0x, 1) = O(EL,1) = > qu(£)0,(€) (23)

n=1

where ¢, (¢) are the generalized time-dependent coordinates for each mode. Substituting Egs. (21)-(23) into
Egs. (1)-(3) and using Egs. (7)—(9) yields

Z[/‘(Kr =¥ Wa)in + (V= v W) gn + :“wi(r/;v =y ¥a)qa] = f(&1) (24)
n=1
> (P10 + 30,444 + pl;0,q,] = 0 (25)
n=1
Z[(Islpn - :uyCVn>(’In + (CZ'Pn —C V;yC)Qn + wi(ls'{’n - :uchn)q:a} = m(éa t) (26)

n=1

where superscript dot denotes derivative with respect to time.
Multiplying Egs. (24)—(26) by V,,, ©,, and ¥, respectively, then summing up these three equations and
integrating from 0 to 1, and using orthogonality condition (20) gives

(1) + 28,0440 (1) + @02 (1) = [Fa(1) + M, (1)] (27)
where
R = [ n@rend o= [ n@neoa

{, 1s a nondimensional quantity known as the viscous damping factor. Here the following assumption has
been made

1
/ [(cl I/;nVn + CZ'Pm an + C3@m@n) - clyc(V;n an + l/;,']/m)] di = 2é/na)nmnémn
0

The dynamic response of the thin-walled Timoshenko beams subjected to stationary, ergodic random
excitations with zero initial conditions is investigated in the frequency domain by using the frequency re-
sponse function method.

From Eq. (27), the cross-spectral density function S,,,,(Q) of the generalized time-dependent coordinate
¢.(t) can be derived as

S4.q:(R) = H, (Q)[Sk,r (Q) + Su,, (Q)]H,(2) (28)

where H;(Q) is the frequency response function

1

H)(Q) = :
(0} — @+ 2i{,Qw;)

H*(Q) is the complex conjugate of H,(Q), Sk,r (L) is the cross-spectral density function between F,(¢) and
Fi(t), Su,m,(Q) is the cross-spectral density function between M, (¢) and M,(¢). Since it is assumed that the
random excitations f(£,¢) and m(¢&,¢) are stationary in time, then so are the generalized forces F,(¢) and
M,(t). Furthermore, F,(¢) and M, (¢) are assumed to be independent random processes so that the cross-
spectral density function between F,(¢) and M,(¢) can be excluded.
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Based on the expressions of the generalized forces F,(¢) and M,(¢), the cross-spectral density functions
Sk, (Q) and Sy, (Q) can be obtained explicitly as, respectively

1l
// Vi(E)Vi(&)Sr (&, &, 2)dE  dE,

Skr(Q) = — Wz

Sun@ =2 [ [ wcowiesien e 0 a0

where Sy (&, &, Q) is the distributed cross-spectral density function between the bending excitations f(¢;, )
and f(&,,1), S, (&1, &, Q) is the distributed cross-spectral density function between the torsional excitations
m(&,,t) and m(&,,t).According to Egs. (21)—(23), with the help of Eqs. (28) and (29), the cross-spectral
density functions S,(&,&,,Q) , Sy(&), &, Q) and Sp(¢;, &, Q) of the bending translation v(&,¢), torsional
rotation (&, ¢) and bending rotation (&, f) can be written as

(29)

56,6, 2) = 3 S H(@m(@n, (QV(EV(E) (30)
S 60 @) = 30 S KR (@ (E)Pi(E) (1)
SEEn ) = 30 3 K (@ (@n,(2)0,(2)01(5) (32)

n

1

~
Il

1

where 7%(£2) is the complex conjugate of £,(£2)

[a—

hi(Q) =

(w7 — @ + 2i,0,Q)

T(@) = / / L EVHEISHEr, 0 Q) + W (E)WI(ESu(Er, &2, @)} dE G,

For ¢ = & = ¢, the cross-spectral density functions S,(&y, &, ), Sy(&1, &, Q) and Sp(&y, &, Q) reduce to
the spectral density functions S, (¢, Q), Sy (&, 2) and Sy(&, Q)

Q=33 K@ (Qu (Vi) (33)
SUED) =Y D B@(@n (@) (34)
SHEQ) =30 S K (Qh(Q)n,(2)0,(5)0(2) (35)

The mean square values of the bending translation, torsional rotation and bending rotation can be found
by integrating the corresponding spectral density functions over all frequencies

(& 1)) = / " S.(6,9)d (36)

o0
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Wen) = [ sieode (37)
(0P, 0)) = / " si(2.2)de (38)

If the external random excitations are assumed to follow the Gaussian probability distribution, the
response probability will also be Gaussian, and therefore the response can be fully described by its spectral
density function.

For simplicity, suppose that there is only one randomly varying concentrated bending excitation acting
on the thin-walled beam at ¢ = &,. In this case, 7,,(2) in Egs. (30)~(32) can be simplified as

M (RQ) = Va(E)Vi(Er)Sr(Q) (39)

The spectral density functions of the bending translation, torsional rotation and bending rotation are
then given by Egs. (33)—(35) as

f; OV(E)| 5(@) (40)
i hE)| 5(@) (41)
9) = | S h(@0/7iE)| 5/(2) @)

4. Numerical results

Some numerical results are given to demonstrate the theoretical formulations derived in preceding
sections, which can be directly applied to compute the random response of the thin-walled Timoshenko
beams subjected to concentrated or distributed random excitations.

The first example is a cantilever thin-walled beam with monosymmetrical semi-circular cross-section,
shown in Fig. 2. The geometrical and physical properties of the thin-walled beam are given as follows:

I1=926x10"%m* J=164x10"°m* I =0.000501kgm, y =0.0155m, L=082m
I=152x10"2m° ux=0835kgm' E=689x10° Nm?, G=265x10°Nm™>
k=05, A4=308x10*m? p=2711.04kgm™’

To validate and confirm the accuracy of the present numerical results, the natural frequencies and mode
shapes of the above thin-walled beam for undamped free vibration are computed first. The first five natural
frequencies of the thin-walled beam are shown in Table 1. The corresponding first five normal mode shapes
including the shear deformation, rotary inertia and warping stiffness are shown in Fig. 3(a)—(e). It can be
seen from Table 1 that the agreement between the present results and those of Bercin and Tanaka (1997) is
very excellent. As expected, the corresponding mode shapes of Fig. 3 also resemble the ones given by Bercin
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! 0.0245m
i

s c >y

0.004m

Fig. 2. Beam cross-section used in numerical example 1.

Table 1
Coupled bending-torsional natural frequencies of the cantilever semi-circular section beam
Frequency order Natural frequency (Hz)
Only warping ignored Only shear deforma- Shear deformation, rotary inertia and warping
tion and rotary included
inertia ignored
Present results Results in Bercin and
Tanaka (1997)
1 62.34 63.79 63.50 63.51
2 129.87 137.68 137.38 137.39
3 259.21 278.35 275.81 275.82
4 418.89 484.77 481.09 481.10
5 605.21 663.84 639.75 639.76

and Tanaka (1997) very closely. Also, to be consistent with Bercin and Tanaka (1997), the bending rotation
and torsional rotation are multiplied by the distance y. when plotting the mode shapes.

Based on the natural frequencies and mode shapes of the thin-walled beam, the mean square values of
bending translation, bending rotation and torsional rotation due to a random varying concentrated
bending excitation can be computed without any difficulty. The random bending excitation is assumed to be
an ideal white noise, so the S;(w) in Egs. (40)~(42) can be replaced by a constant, i.e. S;(w) =S (S is a
constant). In Figs. 4-6, respectively, are shown the mean square values of bending translation, bending
rotation and torsional rotation along the length of the cantilever thin-walled beam subjected to an ideal
white noise concentrated bending excitation acting at the tip of the beam. The value of the damping
coefficient has been taken as 0.01. The mean square bending displacements and torsional displacement
accounting for the shear deformation and rotary inertia have a little difference from the ones excluding the
shear deformation and rotary inertia. But the mean square bending displacements and torsional dis-
placement including the warping stiffness are significantly different from the ones excluding the warping
stiffness, as can be seen from Figs. 4-6. The numerical results show that it is necessary to consider the
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Fig. 3. The first five normal mode shapes of example 1 with the warping stiffness, shear deformation and rotary inertia included (a)
mode 1; (b) mode 2; (¢) mode 3; (d) mode 4; (¢) mode 5.

warping stiffness effect when the mean square displacements of this thin-walled beam are calculated. The
effects of shear deformation and rotary inertia on the mean square displacements seem to be insignificant
for this specific problem investigated.

A cantilever thin-walled uniform beam with a monosymmetrical channel cross-section is consid-
ered next, shown in Fig. 7. The geometrical properties and physical properties of the beam are given
below:
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I'=3885x10°"m°, u=225kgm™', E=21x10"Nm?> G=8x10°Nm>?
k=0.5136, 4=0.012856 m*>, p=17501.6 kgm™

The first five natural frequencies of the cantilever thin-walled beam with and without inclusion of the
warping stiffness and/or shear deformation and rotary inertia are calculated and the numerical results are
shown in Table 2, along with the natural frequencies of Bercin and Tanaka (1997). The corresponding
mode shapes of the first five normal modes including the warping stiffness, shear deformation and rotary
inertia are plotted in Fig. 8(a)—(e). Again, it can be seen from Table 2 and Fig. 8, the natural frequencies and
mode shapes obtained from the present theory completely agree with those given by Bercin and Tanaka
(1997).
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Fig. 7. Beam cross-section used in numerical example 2.

Table 2
Coupled bending-torsional natural frequencies of the cantilever channel section beam
Frequency order Natural frequency (Hz)
Only warping ignored Only shear deforma- Shear deformation, rotary inertia and warping
tion and rotary included
inertia ignored
Present results Results in Bercin and
Tanaka (1997)
1 10.17 24.02 23.78 23.79
2 30.51 88.53 77.24 78.26
3 51.08 131.40 124.77 124.78
4 71.29 358.57 295.25 295.26
5 74.94 549.81 334.87 334.88
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Fig. 8. The first five normal mode shapes of example 2 with the warping stiffness, shear deformation and rotary inertia included (a)
mode 1; (b) mode 2; (c) mode 3; (d) mode 4; (¢) mode 5.

Following the same procedure discussed above, the random response can be computed without any
difficulty based on the natural frequencies and mode shapes. To compare the results obtained from the
present theory including the warping stiffness, shear deformation and rotary inertia with those given by the
theory excluding the warping stiffness or shear deformation and rotary inertia, the mean square values of
the bending translation, bending rotation and torsional rotation due to a random varying concentrated
bending excitation are calculated. The value of the damping coefficient used in computation is 0.01. In Figs.
9-11, respectively, are shown the mean square values of the bending translation, bending rotation and
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Table 3
Mean square values of the bending and torsional response at the tip of the cantilever thin-walled beam
Warping ignored Shear deformation and Present theory
rotary inertia ignored
Bending translation (v*)/S, 3.82x 10710 4.35x10710 7.98x 10710
Bending rotation (6%)/S, 5.38%10°" 8.97x 10! 1.12x10710
Torsional rotation (1)?)/S, 1.18x107° 1.09x 10~ 2.30x107°

torsional rotation along the length of the thin-walled beam subjected to an ideal white noise concentrated
bending excitation acting at the tip of the beam. As can be seen from Figs. 9-11, the mean square values of
the bending displacements and torsional displacement predicted by the theory considering the warping
stiffness, shear deformation and rotary inertia are significantly different from those obtained from the
theory excluding the warping stiffness or shear deformation and rotary inertia. The difference is more
pronounced at the tip of the cantilever thin-walled beam. The mean square values of the bending dis-
placements and torsional displacement at the tip of the cantilever thin-walled beam are shown in Table 3.
The numerical results illustrate quite well that the warping stiffness and shear deformation and rotary
inertia can have strong influences on the random response of the thin-walled beam. So it is absolutely
necessary to include the warping stiffness, shear deformation and rotary inertia when the mean square
displacements of this channel section thin-walled beam are computed.

5. Conclusions

An analytical method for determining the bending-torsion coupled random response of the thin-walled
beams with monosymmetrical cross-sections is developed. The method takes into account the effects of
warping stiffness, shear deformation and rotatory inertia. The external random excitations can be con-
centrated or distributed along the beam length and are assumed to be stationary and ergodic. The mean
square displacements of the thin-walled beams are computed by using the normal mode method combined
with frequency response function method. The effects of warping stiffness, shear deformation and rotary
inertia on the random response of two appropriately chosen thin-walled beams from the literature are
demonstrated and discussed.
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Appendix A

The damped governing differential equations for the bending-torsion coupled forced vibration of the
thin-walled Timoshenko beams can be derived using the Hamilton’s principle as follows.
The total strain energy U of a thin-walled Timoshenko beam shown in Fig. 1 is given by
1

U=3 /0 ' {EI(H’)2 +KAG(Y — 0) + ET (") + GJ(W)Z} dx (A.1)

where all the variables and symbols are defined in Section 2.
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The total kinetic energy 7 of a thin-walled Timoshenko beam is given by

T=3 /0 {M(V — 2pe0) + L* + pl 07| dx (A.2)

The governing equations of motion and the boundary conditions can be derived conveniently by means
of the Hamilton’s principle, which can be stated in the form

[5)
/ (3T — U + W) dt = 0 (A3)
t

V=80 =8y =Y =0 ati—1,h

Herein T is the kinetic energy, U the potential energy, W the virtual work of the nonconservative forces,
which can be written as

ow = | )8+ mx, )80 — e1(5 — 3B — (exi — 1) 30 - cx30] i (A4)
0

Substituting Egs. (A.1), (A.2) and (A.4) into Eq. (A.3) and carrying out the usual steps yields the
governing equations of motion and the boundary conditions.
(a) The governing equations of motion

1V — vl — kAGY" 4+ kAGO + ¢1(v — yelh) = f(x,1) (A.5)
Iy — wye + EDY" — GIY" + (e — eryev) = m(x, 1) (A.6)
pI0 — E10" — kAGU + kAGO + ¢30 = 0 (A7)
(b) The boundary conditions at the ends (x = 0,L)
(—kAGV' + kAGO) dv = 0 (A.8)
(ETY" — GIY' )&y = 0 (A9)
(—EI0)30 =0 (A.10)
(—ETY") ' =0 (A.11)
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